# Effect of Different Synthetic Hormones and/or Their Analogues on Induced Spawning in *Channa marulius*

Muhammad Hafeez-ur-Rehman,<sup>1</sup> Muhammad Ashraf, <sup>1</sup> Farzana Abbas, <sup>1</sup> Khalid Javed Iqbal,<sup>2</sup> Iftikhar Ahmed Qureshi<sup>3</sup> and Syedah Andleeb<sup>4</sup>

<sup>1</sup>Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan <sup>2</sup>Department of Life Sciences, The Islamia University of Bahawalpur, Pakistan

<sup>3</sup>Fisheries Research and Training Institute, Manawan, Lahore, Pakistan

<sup>4</sup>Department of Zoology, Govt. Postgraduate Islamia College for Women, Copper Road, Lahore, Pakistan

**Abstract.-** Effect of different synthetic hormones and/or their analogues have been evaluated on breeding performance of *Channa marulius* using four different hormonal treatments. Males were injected with various combinations of ovaprim (gonadotropin releasing and dopamine antagonist) with human menopausal gonadotropin (HMG), human chorionic gonadotropin (HCG) and HCG+HMG; whereas, females received combination of ovaprim with HMG and HCG. After 12, 16, 20 and 24 h of first dose, injection of ovaprim were administered and blood testosterone, follicle stimulating hormone and luteinizing hormone were analyzed every 4 h for 48 h. Results indicated that combination of HCG+HMG and ovaprim+HCG were effective and reliable synthetic hormones for induced spawning in *C. marulius*. Fecundity and egg fertilization rate was highest for HCG+HMG at latency period of 43.20-44.45 h. Blood hormonal levels were non-significant (P<0.05) and increased gradually till 28 h of post injection and then decreased gradually. Fish injected with ovaprim+HCG does not spawn at all. Eggs obtained were yellow, spherical, non-adhesive and translucent. After fertilization, first cleavage was observed within 2 h, second was between 3-4 h and after 4-6 h, a shield appeared inside and two-layered structure appeared with an outer epiblast and inner hypoblast. However, no further development was observed as the eggs succumb to fungal infection.

Keywords: Channa marulius, synthetic hormone, induce breeding, HMG, HCG, Ovaprim.

# **INTRODUCTION**

he snakeheads *Channa marulius* is widely distributed in natural water bodies of Pakistan, India, Bangladesh, Myanmar, Thailand, Philippines, Vietnam and Cambodia. C. marulius is a highly priced, valuable fish species and much sought-after group of riverine fishes both for game as well as for food in sub-continent. It is good for its taste, high protein content, low intramuscular spines, high qualities nutritive value. medicinal and recommended as a diet during convalescence (Haniffa et al., 2004). It prefers stagnant muddy water bottoms of rivers, lakes, swamps, marshes, canals and ponds. They are voracious carnivore, preying upon live animals. The hatchlings and fry feed mainly on zooplanktons and small insects larvae, while the adults feed on the invertebrates, small fishes and frogs.

Presently it is considered as an important

candidate for freshwater aquaculture because of its outstanding resistance to stress, disease and its airbreathing habit (Ponniah and Sarkar, 2000; Ayyappan *et al.*, 2001).

Over the past fifty years, wild stock of carnivorous fishes in general and this species in particular is under threat owing to over fishing, deteriorating environmental conditions, habitat losses, pollution, river diversions and acute shortage of water. On account of these factors their population is continuously on decline. Very limited efforts have been made on its conservation through artificial breeding at hatcheries. Some enthusiastic fish farmers collect seed of this fish from the natural spawning grounds for culture in ponds with existing carp varieties but this seed source is neither reliable nor sustainable. This scenario strongly demands captive and controlled breeding of this valuable food resource for production of quality seed in required quantity. Available literature shows no significant research work on the induce breeding of Channa marulius in the South East Asia except Hanifa and Sridhar (2002), Hanifa et al. (2004), Marimuthu et al. (2007). However, their work was

Corresponding authors: <u>mhafeezurehman@uvas.edu.pk</u>
 0030-9923/2015/0003-0745 \$ 8.00/0
 Copyright 2015 Zoological Society of Pakistan

focused primarily on *C. striatus* and *C. punctatus* but *C. marulius* remained neglected.

Among several inducing agents used in fish breeding, salmon gonadotropin releasing hormone (sGnRH) or luteinising hormone releasing hormone (LHRH) analogues in combination with dopamine antagonists was found to be effective in fish breeding (Lin and Peter, 1996). Different spawning agents have successfully been applied in many fish Human species including carp. chorionic gonadotropin (HCG) is one of them, which has played effective role in inducing ovulation in catfish (Legendre et al., 2000; Adebayo and Fagbenro, 2004). Introduction Ovaprim of really revolutionized induced spawning technology and widely used for artificial production of eggs in variety of fish species.

Human menopausal gonadotropin (HMG) a new drug was used for the first time in Pakistan for inducing breeding of C. marulius with combination of other hormones. Induced breeding by carp fresh pituitary extract are widely used from the past two decades in the major and exotic carps in Pakistan. All these hormonal combinations have successfully been tested in Labeo rohita, L. calbasu, Catla catla, *Cirrhinus mrigala*. *Puntius javanicus*. *Tor putitora*. T. musullah and T. khudree (Thakur and Reddy, 1997), bighead carp, Aristichthys nobilis (Richardson) (Afzal et al. 2008) and Cyprinus carpio (Sarma et al., 2000).

Latency period means time between administration of the drug and ovulation is a valuable parameter to manage any captive breeding trials/experiments. critical indicator has This successfully elucidated in several fish species (Hogendoorn and Vismanas, 1980; Legendre and Oteme, 1995). A suitable combination of proper dose of different hormones and stripping time always give the maximum yield of the eggs during induced spawning. Thus for the production of C. marulius at massive scale, a study of its own kind was designed in which variety of hormone sources and /or their analogues were used to induce breeding of this valuable fish.

## **MATERIALS AND METHODS**

#### Brood stock selection

Males with soft pectoral fins, round genital

papilla and coarse lower jaw whereas, females with rough pectoral fins, smooth lower jaw, swollen abdomen and oval genital papilla were harvested from earthen ponds at Department of Fisheries and Aquaculture Fish Pond Facilities, Ravi Campus, Pattoki. Maturity of sexes was further confirmed by microscopic examination after dissection. Eggs were immersed in 70% acetic acid for examination of spatial position of cytoplasm and nucleus. Migration of the nucleus to the periphery region indicated readiness of broodfish for hormonal injection. Brooders were thoroughly bathed in KMnO<sub>4</sub> solution (8 ppm) to eradicate infestation transferred holding and to tanks for acclimatization.

Table I.-Dosages (ml. kg<sup>-1</sup> BW) of different hormone<br/>applied for induced spawning of Channa<br/>marulius.

| Treat-               | Male             | è                   | Fem             | ale     | Time |
|----------------------|------------------|---------------------|-----------------|---------|------|
| ment                 | Hormone          | Dose                | Hormone         | Dose    |      |
| 1 <sup>st</sup> horn | none dose (ml.kg | g <sup>-1</sup> BW) |                 |         |      |
| 1                    | Ovaprim +<br>HMG | 0.3+0.3             | Ovaprim+<br>HMG | 0.5+0.3 |      |
| 2                    | Ovaprim +<br>HCG | 0.3+0.3             | Ovaprim+<br>HCG | 0.3+0.5 |      |
| 3                    | HCG+HMG          | 0.2+0.2             | Ovaprim+<br>HCG | 0.5+0.3 |      |
| 4                    | Ovaprim +<br>HMG | 0.5+0.3             | Ovaprim+<br>HMG | 0.3+0.5 |      |
| 2 <sup>nd</sup> hor  | none dose (ml.k  | g <sup>-1</sup> BW) |                 |         |      |
| 1                    | Ovaprim          | 0.2                 |                 | 0.7     | 12   |
| 2                    | _                | 0.2                 |                 | 0.7     | 16   |
| 3                    |                  | 0.2                 |                 | 0.7     | 20   |
| 4                    |                  | 0.2                 |                 | 0.7     | 24   |

#### *Induced spawning of* C. marulius

Triplicates of 4 hormonal treatments (4 males and 3 females) were stocked randomly. Individual animal was anesthetized (MS-222), dried and weighed carefully for calculation of hormonal dosage. Two doses method applied during induced spawning, intramuscularly on the dorso-lateral side behind dorsal fin. First dose composed of combinations of HCG (LG Laboratories-HCG-5000-PK-0506) and HMG (Massone, FSH-75IU, LH 75 IU) with ovaprim (Syndel Laboratories, Vancouver, BC, Canada) mixed in various proportions (Table I). Second dose consisted of only ovaprim injected at 12, 16, 20 or 24 h post first dose. Fish were released back to their respective spawning tanks (2 m diameter; 2000 L) and monitored continually for spawning developments and readiness of fish for stripping at 28-30°C and 5-6 mg/l dissolved oxygen, respectively. The diameter of egg (20 eggs from each ovary) was estimated by using a calibrated micrometer mounted on the eyepiece of a monocular microscope (1 division = 0.05mm).

## **Blood** collection

The blood samples were taken from the caudal vein after hormonal administration at 4 h interval for 48 h. Blood was centrifuged to separate plasma for 10 min and stored at 4°C for further analysis.

# Testosterone assay

Testosterone assay was conducted using Alpha diagnostic international (ADI's) ELISA kit (1880/db120118A), which was developed following kit protocol. The reaction was stopped by adding 50  $\mu$ l of stop solution. Absorbance was measured at 450 nm using an ELISA reader within 30 min. Standard curve was used to estimate the testosterone level in the sample.

## Hormone assays

FSH was determined by using ELISA Kit No. 0200. Absorbance of yellow color developed after following protocol of the kit was measured at 450 nm using ELISA reader within 30 min.

ELISA Kit No. 0100 was used to determine blood LH in females of *C. marulius*. Absorbance of the reaction mixture was measured at 450 nm using an ELISA reader within 30 min.

## Statistical analysis

Data obtained were analyzed using one-way analysis of variance (ANOVA) using SAS (Statistical Analysis System) 9.1 version. Treatment means were analyzed using the Duncan's Multiple Range Test.

# RESULTS

Healthy and sexually matured males and females were paired and four different hormonal

treatments were administrated to induce spawning in *C. marulius* at hatchery conditions. Mean average body weights of males, females and hormonal administration is given in Table I. In treatment 2 and 3 brooders of *C. marulius* showed aggressive courtship behavior, after 43 h of second dose. During courtship, female laid eggs and the male bent its body close to the female and sprayed milt on eggs simultaneously fertilizing eggs.

Females that received ovaprim and HMG did not spawn. whereas females that received HCG+ovaprim HCG+HMG spawned and successfully. HCG and HMG induced spawning was very effective and efficient. Egg fertilization rate in this treatment was 81.33% with latency period of 43.20-44.45 h after the second dose. The longest period was 40.25-42.45 h in ovaprim+ HCG dosage with 41.25±0.88 mean latency hours (Tables II and III). HCG and HMG resulted highest fecundity (1386.67±119.27) followed by treatment of HCG+ovaprim with 1291.67±105.71 eggs kg<sup>-1</sup> body weight. However, differences between the both treatments were non-significant (Table IV). Mean ova diameter ranged from 1.46±0.01 to 1.83±0.025 mm with lowest mean ova diameter  $(1.46\pm0.01 \text{ mm})$ observed in ovaprim+HMG injected females (Table III).

The different stages of fertilized eggs showed in Figure 1. The eggs obtained from female *C. marulius* were yellow in color, spherical, nonadhesive and translucent. After fertilization, first cleavage proceeds within 2 h. The second cleavage observed between 3-4 h. After an interval of 4 - 6 h, a shield appeared inside, when anterior and posterior differentiation was obvious. Two-layered structure appeared with an outer the epiblast and inner hypoblast (Table VI). No further development observed as the eggs succumbed to fungal infection although the fertilizing tanks were sterilized with suitable amount of KMnO<sub>4</sub>.

Blood testosterone levels of male *C. marulius* showed non-significant (P=0.05) differences during first 48 h after hormonal administration (Table III). The highest testosterone level  $(2.89\pm 0.70)$  was observed in 20 h after the second injection of HCG+HMG followed by ovaprim+HCG (2.38± 0.36), Ovaprim+HMG (1.37±0.30) and ovaprim+HMG (1.03 ± 0.02), respectively.

#### HAFEEZ-UR-REHMAN ET AL.



Fig. 1. Different developmental stages of fertilized eggs of Channa marulius.

The FSH and LH levels in blood serum of female C. marulius during 12-48 h with different hormonal treatments are given in Tables IV and V. FSH and LH level showed non-significant difference (P=0.05). The highest follicle stimulating hormone level (1.22±0.25) was observed in HCG+HMG treated group in 20 h after the second injection followed by ovaprim+HCG and ovaprim+HMG, respectively. Hormonal levels in the blood of males and females of C. marulius first increased till 20-24 h of second injection then the hormone level decreased with the passage of time.

Temperature, dissolved oxygen, pH, total dissolved solid, electrical conductivity and salinity

ranged from 29.0-30.4°C, 5.5-6.5 mg/l, 7.6-8.20, 815-820 mg/l, 2.05-2.10 ms/cm, and 0.9 ppm, respectively, in the spawning tanks.

#### DISCUSSION

This study represents significant advances toward induce breeding of *C. marulius*. HCG, HMG, ovaprim and fresh carp pituitary glands (extracted from *Cyprinus carpio*) were injected to both male and female breeders. The experimental fish spawned, eggs produced were fertilized artificially; cell division started but stopped later on and failed to hatch. In another trial, fish were

|                         | Body w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Body weight (g)                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Latency                                                                                                                                                                                    | Channing                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fortilization                                                                                                                                                                               | Incubation                                                                                                                                                                                                 | Famility Da                                                                                                                                                                             | Fecundity                                                                                                                                         |                                                                                    | Trin diamatar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Treatments              | Male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Female                                                                                                             | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | period<br>(h)                                                                                                                                                                              | Success                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rate (%)                                                                                                                                                                                    | period<br>(h)                                                                                                                                                                                              | (Natural)                                                                                                                                                                               |                                                                                                                                                   |                                                                                    | (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ţ                       | 1318.75±162.95b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1283.3\pm53.16a^{b}$                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nil                                                                                                                                                                                        | Nil                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nil                                                                                                                                                                                         | Nil                                                                                                                                                                                                        | Nil                                                                                                                                                                                     | 984.1                                                                                                                                             | 124.03 <sup>a</sup>                                                                | 1.48±0.02c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\overline{T}_2$        | $1620.0\pm271.66a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1430.0±237.82a <sup>o</sup>                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41.25±0.88°                                                                                                                                                                                | Complete                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.0±3.89°                                                                                                                                                                                  | Nil                                                                                                                                                                                                        | 1291.67±105.71ª                                                                                                                                                                         |                                                                                                                                                   |                                                                                    | 1.74±0.01°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $T_4$                   | 1352.50±187.67°<br>1233.75±82.62 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1470.0±290.37°<br>1216.67±20.65 <sup>b</sup>                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43.80±0.52ª<br>Nil                                                                                                                                                                         | Complete<br>Nil                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81.33±1.21"<br>Nil                                                                                                                                                                          | Nil                                                                                                                                                                                                        | 1386.67±119.27"<br>Nil                                                                                                                                                                  | 7" Nil<br>955.33±57.50 <sup>a</sup>                                                                                                               | il<br>±57.50 <sup>a</sup>                                                          | 1.83±0.025 <sup>a</sup><br>1.46±0.01 <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Data figures            | Data figures with different superscript letters are significantly different from each other at P<0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cript letters a                                                                                                    | re signific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | antly differe                                                                                                                                                                              | nt from each                                                                                                                                                                           | other at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P<0.05.                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                         |                                                                                                                                                   |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table III               | Testosterone (ng ml <sup>-1</sup> ) level in the blood of the male <i>Channa marulius</i> after administration of second do (Mean $\pm$ SD).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nl <sup>-1</sup> ) level in t                                                                                      | the blood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of the male                                                                                                                                                                                | Channa m                                                                                                                                                                               | arulius a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fter adm                                                                                                                                                                                    | inistration of                                                                                                                                                                                             |                                                                                                                                                                                         | hormones a                                                                                                                                        | t different 1                                                                      | se of hormones at different time intervals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Treatments<br>after (h) | Male body<br>weight (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 h                                                                                                               | 16 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 h                                                                                                                                                                                       | 24 h                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28 h                                                                                                                                                                                        | 32 h                                                                                                                                                                                                       | 36 h                                                                                                                                                                                    | 40 h                                                                                                                                              | 44 h                                                                               | 48 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12                      | 1300±192.52 <sup>ab</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.375±0.05ª                                                                                                        | $0.59\pm0.11^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                                        | 0.24 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.28±0.25 <sup>b</sup>                                                                                                                                                                      | 1.15±0.27 <sup>b</sup>                                                                                                                                                                                     | $0.92\pm0.26^{b}$                                                                                                                                                                       | 0.75±0.28 <sup>b</sup>                                                                                                                            | $0.59\pm0.25^{b}$                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16<br>20                | 1627.5±322.01°<br>1350±197.65 <sup>ab</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    | 2.09±0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6" 2.38±0.36"<br>2.89+0.70ª                                                                                                                                                                |                                                                                                                                                                                        | 0.55a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.23±0.41a                                                                                                                                                                                  | 2.04±0.40"                                                                                                                                                                                                 | 1.81±0.41a                                                                                                                                                                              | 1.38±0.33a<br>1 84+0 43ª                                                                                                                          | $1.3 / \pm 0.32$<br>$1.17 \pm 0.20^{a}$                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Data figures            | Data figures with different superscript letters are significantly different from each other at P<0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.07-07                                                                                                                                                                                    | $70^{\circ}$ 2.62±0.69a<br>1.03±0.02 <sup>b</sup>                                                                                                                                      | 0.69a<br>$0.02^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.61±0.65a<br>1.01±0.01 <sup>b</sup>                                                                                                                                                        | 2.31±0.54a<br>0.89±0.04 <sup>b</sup>                                                                                                                                                                       | 2.10±0.52 <sup>a</sup><br>0.65±0.05 <sup>b</sup>                                                                                                                                        | 0.45±0.06 <sup>b</sup>                                                                                                                            | $0.35\pm0.03^{b}$                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table IV                | Follicle Stimulating Hormone (FSH) level (mIU/ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cript letters a                                                                                                    | re signific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | antly differe                                                                                                                                                                              | 70" 2.62±<br>1.03±<br>nt from each                                                                                                                                                     | 0.69a<br>$0.02^b$<br>other at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.61±0.65a<br>1.01±0.01 <sup>b</sup><br>P<0.05.                                                                                                                                             | 2.31±0.54a<br>0.89±0.04 <sup>b</sup>                                                                                                                                                                       | 2.10±0.52 <sup>a</sup><br>0.65±0.05 <sup>b</sup>                                                                                                                                        | 0.45±0.06 <sup>b</sup>                                                                                                                            | 0.35±0.03 <sup>b</sup>                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Treatments<br>after (h) | hormones at different time intervals (Mean ± SD).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cript letters an<br>ng Hormone<br>ent time inte                                                                    | re signific<br>(FSH) 1<br>rvals (M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | antly differe<br>evel (mIU/n<br>ean ± SD).                                                                                                                                                 | 70° 2.62±<br>1.03±<br>nt from each<br>nl) in the                                                                                                                                       | 0.69a<br>0.02 <sup>b</sup><br>1 other at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.61±0.65a<br>1.01±0.01 <sup>b</sup><br>P<0.05.<br><b>the fema</b>                                                                                                                          | 2.62±0.69a 2.61±0.65a 2.31±0.34a 2.10±0<br>1.03±0.02 <sup>b</sup> 1.01±0.01 <sup>b</sup> 0.89±0.04 <sup>b</sup> 0.65±0.<br>om each other at P<0.05.<br>in the blood of the female <i>Channa marulius</i> a | 2.10±0.52 <sup>a</sup><br>0.65±0.05 <sup>b</sup><br><i>arulius</i> after t                                                                                                              | 0.45±0.06 <sup>b</sup><br>ne administr                                                                                                            | 0.35±0.03 <sup>b</sup>                                                             | 0.22±0.03 <sup>-</sup><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12<br>16<br>20<br>24    | hormones at differ<br>Female body<br>weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cript letters and Hormone<br>ent time inte                                                                         | re signific<br>(FSH) 1<br>rvals (M<br>16 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | antly differe<br>evel (mIU/n<br>ean ± SD).<br>20 h                                                                                                                                         | 70° 2.62±0<br>1.03±0<br>at from each (<br>al) <b>in the b</b><br>24 h                                                                                                                  | 0.69a<br>0.02 <sup>b</sup><br>other at<br>blood of<br>h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.61±0.65a<br>1.01±0.01 <sup>b</sup><br>P<0.05.<br>the fema                                                                                                                                 | 2.51±034a<br>0.89±0.04 <sup>b</sup><br>Ile <i>Channa m</i><br>32 h                                                                                                                                         | 2.10±0.52 <sup>a</sup><br>0.65±0.05 <sup>b</sup><br><i>arulius</i> after t<br>36 h                                                                                                      | 1.0720772<br>0.45±0.06 <sup>b</sup><br>ne administr<br>40 h                                                                                       | 0.35±0.03<br>ation of se<br>44 h                                                   | 0.22±0.03 <sup>2</sup><br>scond dose o<br>48 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Tahle V -               | Female body<br>weight           1266.67±57.73 <sup>a</sup> 1433.33±292.80 <sup>a</sup> 1456.67±36.65 <sup>a</sup> 1210.0±17.32 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cript letters a<br>ng Hormone<br>ent time inte<br>12 h<br>0.56±0.04a                                               | re significar<br>(FSH) lev<br>rvals (Mea<br>rvals (Mea<br>0.82±0.15 <sup>a</sup><br>0.98±0.15 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | antly different 1<br>evel (mIU/ml)<br>ean $\pm$ SD).<br>20 h<br>1 <sup>a</sup> 1.08 $\pm$ 0.01 <sup>a</sup><br>5 <sup>a</sup> 1.13 $\pm$ 0.10 <sup>a</sup><br>1.22 $\pm$ 0.25 <sup>a</sup> | $70^{\circ}$ 2.62±0.69<br>1.03±0.02<br>nt from each oth<br>nl) in the bloo<br>nl) in the bloo<br>24 h<br>24 h<br>$10^{\circ}$ 1.01±0.01°<br>1.07±0.06°<br>25° 1.10±0.12°<br>0.95±0.09° | 0.059a<br>0.02 <sup>b</sup><br>1 other at<br><b>blood of</b><br><b>blood of</b><br>0.01 <sup>a</sup> 1<br>0.06 <sup>a</sup><br>0.12 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.61±0.65a<br>1.01±0.01 <sup>b</sup><br>1 P<0.05.<br><b>f the fema</b><br><b>f the fema</b><br>1.02±0.002 <sup>a</sup><br>1.10±0.12 <sup>a</sup><br>1.10±0.12 <sup>a</sup>                  | 251±034a<br>0.89±0.04 <sup>b</sup><br>(1.10 <b>Channa m</b><br><b>32 h</b><br>0.78±0.08 <sup>b</sup><br>0.98±0.07 <sup>a</sup><br>0.98±0.15 <sup>a</sup>                                                   | $2.10\pm0.52^{a}$ $0.65\pm0.05^{b}$ <i>arulius</i> after t $36 h$ $0.63\pm0.08^{b}$ $0.88\pm0.10^{a}$ $0.77\pm0.03^{ab}$                                                                | 1.0720772<br>0.45±0.06 <sup>b</sup><br>1.075±0.06 <sup>b</sup><br>0.75±0.05 <sup>a</sup><br>0.75±0.05 <sup>a</sup><br>0.61±0.01 <sup>b</sup>      | 0.35±0.03°<br>ation of se<br>0.32±0.02°<br>0.64±0.04°<br>0.60±0.06°                | cond dose o<br>.22±0.03 <sup>±</sup><br>.22±0.03 <sup>±</sup><br>.22±0.03 <sup>±</sup><br>.22±0.04 <sup>±</sup><br>.22±0.04 <sup>±</sup><br>.22±0.02 <sup>±</sup><br>.22±0.02 <sup>±</sup><br>.22±0.02 <sup>±</sup><br>.22±0.02 <sup>±</sup>                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | Intervals (Mean ± SD).           Female body weight         12 h         16 h         20 h         24 h         28 h         32 h         36 h         40 h         44 h         48 h           1266.67±57.73°         0.56±0.04a         0.82±0.01°         1.08±0.01°         1.01±0.01°         1.02±0.002°         0.78±0.08 <sup>b</sup> 0.63±0.08 <sup>b</sup> 0.54±0.10 <sup>b</sup> 0.32±0.02°         0.23±0.04 <sup>b</sup> 1436.67±366.65°         0.98±0.15°         1.13±0.10°         1.07±0.06°         1.10±0.12°         0.98±0.15°         0.88±0.09°         0.54±0.00°         0.32±0.02°         0.23±0.04 <sup>b</sup> 0.32±0.02°         0.23±0.02°         0.32±0.02°         0.32±0.02°         0.23±0.02°         0.32±0.02°         0.32±0.02°         0.32±0.02°         0.33±0.02°         0.33±0.02°         0.33±0.02°         0.33±0.02°         0.33±0.02°         0.33±0.02°         0.43±0.04 <sup>b</sup> 0.43±0.04 <sup>b</sup> 0.43±0.04 <sup>b</sup> 0.43±0.04 <sup>b</sup> 0.43±0.04 <sup>b</sup> 0.26±0.01 <sup>b</sup> 0.43±0.04 <sup>b</sup> 0.26±0.01 <sup>b</sup> 0.43±0.04 <sup>b</sup> 0.43±0.04 <sup>b</sup> 0.26±0.01 <sup>b</sup> 0.43±0.04 <sup>b</sup> < | cript letters a<br>ng Hormone<br>ent time inte<br>12 h<br>0.56±0.04a<br>0.56±0.04a<br>rvals (Mean ) (n             | re signific<br>(FSH) 1<br>rvals (M<br>16 h<br>0.82±0.0<br>0.98±0.1<br>0.98±0.1<br>ng ml <sup>-1</sup> ) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | antly differe<br>evel (mIU/n<br>can ± SD).<br>20 h<br>1 <sup>a</sup> 1.08±0.<br>5 <sup>a</sup> 1.13±0.<br>1.22±0.                                                                          | 7/0° 2.0.2±<br>1.03±<br>1.03±<br>1.03±<br>1.03±<br>1.01 each<br>1.01 m the<br>2.4<br>1.01 ±<br>2.5° 1.01±<br>2.5° 1.10±<br>2.5° 0.95±<br>0.95±<br>0.95±                                | 0.059a<br>0.02 <sup>b</sup><br><b>blood of</b><br><b>blood of</b><br><b>blood of</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>o</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b><br><b>blood</b> | 2.61±0.65a<br>1.01±0.01 <sup>b</sup><br>P<0.05.<br><b>the fema</b><br>28 h<br>28 h<br>1.02±0.002 <sup>a</sup><br>1.10±0.05 <sup>a</sup><br>1.10±0.09 <sup>a</sup><br>1.10±0.09 <sup>a</sup> | 1.6 <i>Channa m</i><br>0.89±0.04 <sup>b</sup><br>32 h<br>0.78±0.08 <sup>b</sup><br>0.98±0.17 <sup>a</sup><br>0.98±0.15 <sup>a</sup><br>0.91±0.05 <sup>ab</sup>                                             | 2.10±0.52 <sup>a</sup><br>0.65±0.05 <sup>b</sup><br><b>36 h</b><br>0.63±0.08 <sup>b</sup><br>0.88±0.09 <sup>a</sup><br>0.77±0.03 <sup>ab</sup>                                          | e administi<br>40 h<br>0.54±0.10 <sup>b</sup><br>0.75±0.05 <sup>a</sup><br>0.61±0.01 <sup>b</sup>                                                 | ation of se<br>0.35±0.03°<br>ation of se<br>0.32±0.02°<br>0.64±0.04°<br>0.43±0.04° | 3.2       1.34±0.42       1.17±0.20       1.27±0.32         05 <sup>b</sup> 0.45±0.06 <sup>b</sup> 0.35±0.03 <sup>b</sup> 0.22±0.03 <sup>c</sup> fter the administration of second dose of       1.0       1.27±0.32         n       40 h       44 h       48 h         n       40.5±0.05 <sup>a</sup> 0.32±0.02 <sup>c</sup> 0.23±0.04 <sup>b</sup> 1.09 <sup>a</sup> 0.75±0.05 <sup>a</sup> 0.64±0.04 <sup>a</sup> 0.32±0.02 <sup>a</sup> 1.09 <sup>a</sup> 0.61±0.01 <sup>b</sup> 0.43±0.04 <sup>b</sup> 0.26±0.01 <sup>b</sup> inistration of second dose of hormones in       10       1.10 <sup>b</sup> 1.27±0.02 <sup>a</sup> |
| Treatments<br>after (h) | hormones at differ       Female body<br>weight       1266.67±57.73 <sup>a</sup> 1433.33±292.80 <sup>a</sup> 1456.67±366.65 <sup>a</sup> 1210.0±17.32 <sup>a</sup> Luteinizing Horm       different time intei       Female body       Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cript letters a<br>ng Hormone<br>ent fime inte<br>12 h<br>0.56±0.04a<br>0.56±0.04a<br>nones (LH) (n<br>rvals (Mean | re signific<br>(FSH) I<br>( <b>FSH) I</b><br>( <b>FSH) I</b><br>( <b>M</b> )<br>( <b>N</b> )<br>( | antly differe<br>evel (mIU/n<br>ean ± SD).<br>1 <sup>a</sup> 1.08±0.<br>5 <sup>a</sup> 1.13±0.<br>1.22±0.<br>evel in the<br>20 h                                                           | 2.6.2±<br>1.03±<br>1.03±<br>1.03±<br>1.03±<br>1.01±<br>1.01±<br>1.07±<br>1.07±<br>0.95±<br>0.95±<br>0.95±<br>1.10±<br>0.95±<br>1.10±<br>0.95±                                          | 0.059a<br>0.02 <sup>b</sup><br><b>blood of</b><br><b>blood of</b><br><b>blood of</b><br><b>b</b><br>0.00 <sup>a</sup><br>0.10 <sup>a</sup><br>0.12 <sup>a</sup><br>0.09 <sup>a</sup><br>0.09 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.61±0.65a<br>1.01±0.01 <sup>b</sup><br>P<0.05.<br><b>the fema</b><br>28 h                                                                                                                  | 1.8 ± ±0.34a<br>0.89±0.04 <sup>b</sup><br>32 h<br>0.78±0.08 <sup>b</sup><br>0.98±0.07 <sup>a</sup><br>0.98±0.15 <sup>a</sup><br>0.91±0.05 <sup>ab</sup><br>32 h                                            | 2.10±0.52 <sup>a</sup><br>0.65±0.05 <sup>b</sup><br><b>36 h</b><br>0.63±0.08 <sup>b</sup><br>0.88±0.10 <sup>a</sup><br>0.77±0.03 <sup>ab</sup><br><b>. the administr</b><br><b>36 h</b> | <b>40 h</b><br>0.45±0.06 <sup>b</sup><br><b>40 h</b><br>0.54±0.10 <sup>b</sup><br>0.75±0.05 <sup>a</sup><br>0.61±0.01 <sup>b</sup><br><b>40 h</b> | 0.35±0.03°<br>ation of se<br>0.32±0.02°<br>0.64±0.04°<br>0.43±0.04°<br>0.43±0.04°  | 2.2.2±0.03 <sup>2</sup><br>0.22±0.03 <sup>2</sup><br>0.22±0.04 <sup>1</sup><br>0.23±0.04 <sup>1</sup><br>0.32±0.02 <sup>3</sup><br>0.23±0.02 <sup>3</sup><br>0.26±0.01 <sup>1</sup><br>hormones in<br>48 h                                                                                                                                                                                                                                                                                                                                                                                                                           |

INDUCED SPAWNING IN CHANNA MARULIUS

749

| Spawning time (h) | <b>Developmental stages</b> | Interpretation of the cell division                                                 |
|-------------------|-----------------------------|-------------------------------------------------------------------------------------|
|                   |                             |                                                                                     |
| 0                 | Fertilized egg              | Eggs were free-floating, spherical, non-adhesive, transparent and straw yellow in   |
|                   |                             | color. The diameter of the fertilized eggs varied from 1.20 mm-1.40 mm.             |
| 2                 | 2 Cell stage                | Cleavage, the first cell division were started from the fertilized eggs may became  |
|                   |                             | into two cells                                                                      |
| 3                 | 16 Cell stage               | Fourth Cleavage, moved towards the blastulation                                     |
| 4                 | Morula                      | Multicelluar blastodisc were produced as result of Blastulation process             |
| 6                 | Blastula                    | In this stage a shield was formed, more than half the yolk entered inside, anterior |
|                   |                             | and posterior differentiation was obvious.                                          |
| 8                 | Gastrula                    | Two layered structure was appeared with an outer the epiblast, and inner one the    |
|                   |                             | hypoblast                                                                           |

 Table VI. Developmental stages of the fertilized eggs of Channa marulius.

Further developmental stages could not be preceded due to fungus that encircled the whole eggs. The fertilized eggs were become in cluster form.

injected with different doses of ovaprim but fishes did not spawn (Hafeez-ur-Rehman, 2013). Different inducing agent used in this study have been used in major carps (Leelapatra, 1988; Thalathiah et al., 1988) and Chinese carps (Peter et al., 1988; Weil et al., 1986; Kumarasini and Seneviratne, 1988) extensively to produce high yields. However, the spawning success among these fishes varied from species to species. In the present study, two treatment regimes resulted in successful spawning of Channa marulius. Haniffa and Sridhar (2002) results were in lined with our study who reported Induced spawning of the spotted murrel (Channa punctatus) and catfish (Heteropneustes fossilis) by using ovaprim and HCG at varying dosages. Similarly, Haniffa et al. (2000) injected natural hormones (pituitary extract and human chorionic gonadotropin) to murrel Channa striatus. The fertilization rate was 81.33% in fish that received HCG+HMG and 67% in Ovaprim+HCG receiving group. These results are in line with those of Haniffa and Sridhar (2002) who used HCG Hormone (3000 IU) in the induced breeding of Channa punctatus, produced fertilized eggs  $(1253\pm126 \text{ eggs})$  weighing 65-85 g. The differences in egg outputs observed previously (Haniffa and Sridhar, 2002; Yaakob and Ali, 1992) may be due to different experimental species, of spawners and the source of hormones used. It may be true in low egg production rate per kg of female body weight.

Failure of Ovaprim+HMG synthetic hormones may be due to hormone type, manufacturing process, administration procedures and extraction of acquirement of gonads procedure may vary from species to species and depending on the reproductive biology as obseverd by Mylonas *et al.* (2009). The understanding of the endocrine gland control gametogenesis, final maturation and spawning played key role for the proper management of the broodstock fish.

Mean egg diameter of all fish, which ovulated in the four experiments ranged from 1.46 to 1.83 mm. Germinal vesicle, broke down and an increase in the size of oocytes due to hydration indicated the changes in the nucleus and cytoplasm during final maturation (Goetz, 1983; Guraya, 1986). The increase in ova diameter might be an early action of steroidogenesis through hormonal influence. Accordingly, decrease in egg diameter may be an early steroidogenesis due to which oocyte batch have not obtained sufficient yolk.

Non-spawning response of two treatments injected with ovaprim+HMG might be due to the non-stimulation of the male and female due to less testosterone level in the blood in males and FSH and LH level in the female *C. marulius* blood. Other factors might be that the fish were heavily conditioned, and the eggs not staged prior to the spawning attempt.

The highest level of testosterone in male *C. marulius* by Ovaprim obtained after 20 h of second injection. These results are very similar to Metwally and Fouad (2008) who reported that the highest testosterone level in induced male grass carp (*Ctenophryngodon idella*) by pregnyl and Ovaprim obtained in 8-10 h after the first injection. Other

studies indicated improving the spermatogensis with a series of treatment hormone of Ovaprim, Ovaplant, HCG, cPG and comibination of cPG with Ovaprim or HCG (Abol-Munafi et al., 2006; Tu et al., 2012) in white silver carp (Hypophthalmicthys *molitrix*). On the other hand ZviYaron, (1995) reported that stimulation of sperm duct by gonadotropin or by 17, 20-dihydroxy-4-pregnen-3one (17, 20-P) in common carp (Cyprinus carpio). In white bass (Morone chrysops) were exposed to an increase in temperature and treated with a gonadotropin-releasing hormone antagonist (GnRHa) enhancing milt production in white bass 1997) (Costadinos et al., and on bass (Dicentrarchus labrax L.) (Lucinda et al., 2001).

### CONCLUSIONS

It conclude that combination of HCG+HMG and the ovaprim+HCG were effective and reliable synthetic hormones for induce breeding of *Channa marulius*. Hence *Channa* breeding can be induced and these findings can be helpful in future induced spawning and sustainability attempts of this valuable species.

#### REFERENCES

- ABOL-MUNAFI, A.B., LIEM, P.T., VAN, M.V., AMBAK, M.A., EFFENDY, A.W.M. AND AWANG, M.S., 2006. Histological ontogeny of the digestive system of marble goby (*Oxyeleotris marmoratus*) larvae. J. Sust. Sci. Manage., 1:79–86.
- ADEBAYO, O.T. AND FAGBENRO, O.A., 2004. Induced ovulation and spawning of pond raised African giant catfish, *Heterobranchus bidorsalis* by exogenous hormones. *Aquaculture*, **242**: 229-236.
- AFZAL, M., RAB, A., AKHTAR, N., KHAN, M. F., KHAN S.A. AND QAYYUM, M., 2008. Induced spawning of bighead carp, *Aristichthys nobilis* (Richardson), by using different hormones/hormonal analogues. *Pakistan* J. Zool., 40:283-287.
- AYYAPPAN, S., RAIZADA, S. AND REDDY, A.K., 2001. Captive breeding and culture of new species of aquaculture. In: *Captive breeding for aquaculture and fish germplasm conservation* (eds. A.G. Ponniah, K.K. Lal and V.S. Basheer). NBFGR-NATP Publication No. 3, NBFGR, Lucknow, India, pp 1-20.
- COSTADINOS, C.M., AHIKAM, G., YOAV, M. AND YONATHAN, Z., 1997. Hormonal changes in male white bass (*Morone chrysops*) and evaluation of milt

quality after treatment with a sustained-release GnRHa delivery system. *Aquaculture*, **153**: 301-313.

- GOETZ, F.W., 1983. Hormonal control of oocyte final maturation and ovulation in fishes. In: *Fish physiology* (eds. W.S. Hoar, DJ. Randall and E.M. Donaldson), IX, Academic Press, New York. Pp. 117-170.
- GURAYA, S., 1986. Ovum maturation. In: The cell and molecular biology of fish oognesis, Monographs in Developmental Biology (ed. H.W. Saver), XVIII, New York, pp. 155-164.
- HAFEEZ-UR-REHMAN, M., 2013. Studies on the reproductive biology and induced spawning of Murrel, Channa marulius. Ph.D. thesis, University of Veterinary and Animal Sciences, Lahore, Pakistan, pp. 269.
- HANIFFA, M.A.K. AND SRIDHAR, S., 2002. Induced spawning of spotted murrel, *Channa punctatus* and catfish, *Heteropneustes fossilis* using human chorionic gonadotropin and synthetic hormone (Ovaprim). *Vet. Arch.*, **72**: 51-56.
- HANIFFA, M.A., SHAIK, M. J. AND MERLIN, R.T., 2004. Induction of ovulation in *Channa striatus* (Bloch) by SGnRHa. *Fish. Chim.*, 16:23-24.
- HOGENDOORN, H. AND VISMANAS, M.M., 1980. Controlled propagation of the African catfish *Clarias lazera* (C and V). II. Artificial reproduction. *Aquaculture*, 21:39-53.
- KUMARASINI, W.S.A. AND SENEVIRATNE, P., 1988. Induced multiple spawning of Chinese carps in Srilanka. Aquaculture, 74: 57-62.
- LEELAPATRA, W.,1988. Carp culture in Thailand with particular emphasis on induced spawning. *Proceedings* of the Aquaculture International Congress and Exposition, Vancouver, B.C., 6-9 September, pp. 331-337.
- LEGENDRE, M. AND OTEME, Z., 1995. Effect of varying latency period on the quantity and quality of ova after HCG induced ovulation in the African catfish, *Heterobranchus longifilis* (Teleostei, Clariidae). Aquat. Liv. Resour., 8: 309-316.
- LEGENDRE, M., SLEMBROUCK, J., SUBAGJA, J. AND KRISTANO, A.H., 2000. Ovulation rate, latency period and ova viability after GnRH- or hCG-induced breeding in the Asian catfish *Pangasius hypophthalmus* (Siluriformes, Pangasiidae). *Aquat. Liv. Resour.*, **13**: 145-151.
- LIN, H.R. AND PETER, R.E., 1996. Hormones and spawning in fish. Asian Fish. Sci., 9:21-33.
- LUCINDA, R., IDEAL, B., SILVIA, Z., MÓNICA, S. AND MANUEL, C., 2001. Changes in plasma levels of reproductive hormones during first sexual maturation in European male sea bass (*Dicentrarchus labrax L.*) under artificial day lengths. *Aquaculture*, **202**: 235-248.
- MARIMUTHU, K., KUMAR, D. AND HANIFFA, M.A., 2007. Induced spawning of striped snakehead, *Channa*

striatus, using ovatide. J. appl. Aquacul., 19:4, 95-103

- METWALLY, M.A.A. AND FOUAD, I.M., 2008. Some Biochemical changes associated with injection of grass carp (*Ctenopharyngodon idella*) with ovaprim and pregnyl for induction of artificial spawning. *Global Vet.*, 2: 320-326.
- MYLONAS, C.C., FOSTIER, A. AND ZANUY, S., 2009. Broodstock management and hormonal manipulation of fish reproduction. *Aquaculture*, **197**: 99-136.
- PETER, R.E., LIN, H.R. AND KRAAK, V.D., 1988. Induced ovulation and spawning in cultured fresh water fish in China: advanced in application of GnRH analogue and dopamine antagonists. *Aquaculure*, **74**: 1-10.
- PONNIAH, A.G. AND SARKAR, U.K., 2000. Fish biodiversity of North-East India. NBFGR-NATP Publication, 2: 1-228
- SARMA, D., BHUYAN, R.N. AND DUTTA, A., 2000. A study on the effect of light and temperature on the induced breeding of Cyprinus carpio (German strain) with ovatide and growth analysis at Shillong (Meghalaya). First Indian Fisheries Science Congress, Chandigarh, India.
- THAKUR, N.K. AND REDDY, A.K., 1997. Repeat field trials with new hormonal preparation- ovatide for fish

breeding. Final Report, CIFE, Mumbai, India.

- THALATHIAH, S., AHMAD, A.O. AND ZAINI, M.S., 1988. Induced spawning techniques practiced at Batu Berendam, Malaka, Malaysia. Aquaculture, 74: 23-33.
- TU, D.T.M., DONG, N.T.K. AND PRESTON, T.R., 2012. *Effect on composition of duckweed* (Lemna minor) *of different levels of biodigester effluent in the growth medium and of transferring nutrient-rich duckweed to nutrient-free water.* Livestock Research for Rural Development.
- WEIL, C., FOSTIER, A. AND BILLARD, R., 1986. Induced spawning (ovulation and spermiation) in carp and related species. In: *Aquaculture of cyprinids*. J. Inra. Paris, pp. 119-137.
- YAAKOB, W.A.A. AND ALI, A.B., 1992. Simple method for backyard production of snakehead (*Channa striatus*, Bloch) fry. *Naga*, **15**: 22-23.
- ZVI YARON, 1995. Endocrine control of gametogenesis and spawning induction in the carp. *Aquaculture*, **129**: 49-73.

(Received 15 April 2014, revised 27 January 2015)